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ABSTRACT  

Mathematics is generally perceived as an exact science. Yet the disparate 

thoughts establishing the exactness are replete with lots of technicalities that are, 

ordinarily, not simple. Consequently, the major cognitive barrier that 

philosophers of Mathematics encounter in the course of unraveling 

mathematically related ideas has been the challenge of converting the 

sophisticated crypto-codes associated with mathematical equations into a non-

technical form for easy comprehension by both experts and non-experts. The 

specific objective of this article with the title, “Kurt Gödel’s Rebuttal of 

Formalism in Mathematics,” is to present the incompleteness theorems of Kurt 

Gödel in a non-technical manner so as to simplify its intelligibility for both 

philosophers and mathematicians. To achieve this, the research undertakes a 

narrative exposition of some of the attempts to formalize the axioms of 

mathematics. In the exposition, the contributions of Euclid, Dedekind, Hilbert, 

Whitehead and Russell in the attempt to build Mathematics into a rigorous 

formal system that is complete, consistent, and decidable are analyzed. 

Subsequently, the essay advances to the discussion of Kurt Gödel’s rebuttal of 

formalism through the instrumentality of his incompleteness theorems. Primely, 

this research exercise reckons the non-mathematical disambiguation of Gödel’s 

incompleteness theorems undertaken in this piece as the hallmark of the article. 
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INTRODUCTION 

Gödel’s theorem is perceived by many as “the third leg, together with 

Heisenberg’s uncertainty principle and Einstein’s relativity, of that tripod of 

theoretical cataclysms that have been felt  to force disturbances deep down in 

the foundation of the exact sciences” (Goldstein 21-22). What is popularly 

referred to as Gödel’s theorem is a conjunction of two theorems, propounded by 

Gödel in his work entitled “On Formally Undecidable Propositions of Principia 

Mathematica and Related Systems 1.” Godel’s work was a pessimistic response 

to David Hilbert’s 1900 lecture, where he, as a leading mathematician in the 
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modern era, set the pace for mathematicians in the Twentieth Century by 

outlining a set of twenty three problems that mathematicians must solve in the 

Century. He was so optimistic of the solvability of every mathematical problem 

that he translated this optimism into the axioms of solvability in his famous no 

ignorabimus statement, which states that there are no unsolvable problems in 

Mathematics. 

Among the problems posed by Hilbert was the second problem which 

demanded for a proof of the consistency of the axioms of mathematics. The first 

path to the solution of this problem required configuring the entire mathematics 

into one axiomatic formal system from which one could derive all the theorems 

of mathematics according to fixed syntactical rules of inference and the second 

path required demonstrating that the formal system is consistent.  Such a formal 

system that follows the first path and contains all the rules for deciding or 

proving all mathematical theorems is said to be complete. A formal system is said 

to be consistent if it is incapable of generating contradictory propositions and 

inconsistent if otherwise. 

Alfred North Whitehead and Bertrand Russell rose to the task of 

constructing a formal system of mathematics that bears the features of 

completeness and consistency in their novel Principia Mathematical. But Gödel 

critiqued this effort of Whitehead and Russell and by extension, Hilbert’s 

programme, in his ground breaking theorems mentioned above and proved that 

the formal system of Principia Mathematica and other related formal systems 

cannot fulfill the criteria of completeness and consistency. This work is a 

discursive presentation of the Godellian paraphernalia. 

 

THE EUCLIDEAN BACKGROUND TO GÖDEL’S INCOMPLETENESS 

THEOREMS IN RELATION TO THE AXIOMATIC FORMALIZATION OF 

MATHEMATICS 

A proper understanding of the Godellian theorem requires a brief 

historical survey of the axiomatic formalization of mathematics programme 

which gave rise to Gödel’s famous theorems. The notion of an axiomatic system 

is remotely traceable to Euclid. In his Elements of Geometry, which was regarded 

as a sacred book of geometry for over two thousand years, Euclid rigorously 

established the science of geometry on a system of definitions, postulates and 

axioms. The entire science and theorems of geometry were deduced from the 

principles embedded in Euclid’s work which were enunciated in the definitions, 

postulates and axioms. Douglas Hofstadter (88) observes that Euclid set up the 

paradigm of rigour in Mathematics because he so constructed his geometry in 

such a way that any given theorem or proposition of geometry depended only 

on or was to be derived from the hitherto established principles and axioms. 

This implies that every valid principle and proposition of the system must be at 

realm, consistent or non-contradictory to the axioms. Kneebone, in his 

Mathematical Logic and the Foundations of Mathematics: An Introductory Survey 
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(135-136), spells out some principles of Euclid’s axiomatic system classified 

under the three headings of definitions, postulates and common notions or 

axioms. No discussion of Euclid’s principles will be complete without the 

mention of the controversial fifth postulate (the parallel postulate) and how it 

paved the way for the emergence of non-Euclidean geometry. Ernest Nagel and 

James Newman (9) observe in respect of the fifth postulate that for some 

reasons, the postulate did not appear self-consistent to the ancient Greeks. The 

major reason for its lack of consistency, according to the duo, is that Euclid 

defines parallel lines as straight lines in a plane, which if produced indefinitely 

in both directions do not meet. Thus, to say that two lines are parallel is to assert 

the impossibility of the two lines meeting even infinitely. The fifth postulate 

appears to be an apparent contradiction of Euclid’s definition of the parallel 

lines. Another controversial assertion of the fifth postulate is the assumption 

that “through every point P not on a given line L there exists exactly one parallel 

to L, i.e. one straight line which does not meet L” (Hempel 464). Thus, it is 

evident that a proof of Euclid’s parallel postulate on the basis of the other 

postulates is impossible.  

This independence of the fifth postulate from the other four does not, 

however, mean that it is false. Alfred Tarski (461) observes that “Euclid’s 

parallel postulate is not false, but it is true only on a plane (two dimensional) 

surface like a chalkboard.” In the 19th century, the Russian, Lobacheusky, and 

the Hungarian, Bolyai, simultaneously but independently discovered the non-

Euclidean geometry called hyperbolic geometry. Later Bernhard Riemann 

developed an alternative geometry called elliptical geometry.  

 Fundamentally, Euclid’s axiomatisation programme lacked the rigour of 

the formal language necessary for the eradication and elimination of ambiguity 

in Mathematic. This is borne out of the fact that Euclid’s principles were mostly 

rendered in ordinary natural language which is most times burdened by 

imprecision, vagueness and equivocation. In forestalling this defect of ordinary 

language, Francesco Berto asserts that “philosophers have been envisaging 

artificial, formal languages to serve as antidotes to the deficiencies of natural 

language, and in which rigorous science could be formulated: languages whose 

syntax was to be absolutely precise, and whose expressions were to have 

completely precise and univocal meanings” (16). 

 Another deficiency of the ancient axiomatic system was that it lacked an 

abstract conception of number. Kneebone (137) observes that this made 

mathematicians to conceive magnitude mostly in terms of the geometrical areas, 

lengths or volumes. These stated deficiencies of the ancient deductive system 

were remedied efficiently in the modern era without necessarily discarding the 

entire idea of the axiomatic system. The overriding influence that the axiomatic 

system exerts on thinkers in all era of philosophy is captured by Nagel et al, 

thus: 

The axiomatic development of geometry made a powerful 

impression upon thinkers throughout the ages; for the relatively 



Ifiok: Journal of Interdisciplinary Studies                                              Vol. 5, No. 1, July, 2020 

 

 

17 

 

small numbers of axioms carry the whole weight of the 

inexhaustible numerous propositions derivable form them. 

Moreover, if in some way the truth of the axioms can be 

established… both the truth and the mutual consistency of all the 

theorems are automatically guaranteed. For these reasons the 

axiomatic form of geometry appeared to many generations of 

outstanding thinkers as the model of scientific knowledge at its 

best. It was natural to ask, therefore, whether other branches of 

thought besides geometry can be placed upon a secure axiomatic 

foundation (3). 

 

THE MODERN BACKGROUND TO GÖDEL’S INCOMPLETENESS 

THEOREMS IN RELATION TO THE AXIOMATIC FORMALIZATION OF 

MATHEMATICS 

The admiration of the axiomatic system came with the adoption and 

exportation of this system to all the branches of Mathematics. However, in the 

modern era, the rigour of a formal language was added to the axiomatic system 

to make it devoid of the ambiguities of natural language. Thus, in the modern 

era of Mathematics, many attempts were made to eliminate contradictions and 

inconsistencies by reducing all expressions to rigorous symbols, signs and 

formulae. A deductive system that is so rigorous is called a formal system. One 

of the early masters who attempted an exportation of the axiomatic paradigm to 

Arithmetics or Number theory was Richard Dedekind. He was so appalled by 

the lack of a rigorous basis for arithmetic that he had to constantly make 

recourse to axiomatic geometrical intuitions as an indispensable didactic tool for 

his lectures on differential calculus (Dedekind, Continuity and Irrational 

Numbers 767). He therefore attempted to elaborate an abstract basis for the 

rigorous foundation of Mathematics. This abstract foundation, for Dedekind is 

logic and not intuition, as can be seen below, in his conception of number.  

In calling arithmetic (algebra, analysis) only as a part of logic, I am 

already asserting that I hold the concept of number to be wholly 

independent of representations or intuitions of space and time and 

that I hold it rather to be a product of the pure laws of thought… if 

we scrutinize closely what is done in counting a set or number 

things, we are led to consider the ability of the mind to relate 

things to things, to let a thing correspond to a thing, or to 

represented a thing by a thing, an ability without which no 

thinking is possible ((“Was Sind und was Sollen die Zahlen” or 

“On what Numbers ought to be” 790-791). 

This shows that Dedekind holds the concept of number to be an immediate 

outcome of laws of thought devoid of intuition. He clearly articulates the 

importance of founding Mathematics on the principles of relation between 

things which, in this case, implied logic.  
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One other seminal mind who attempted establishing Mathematics on a 

rigorous basis by symbolically axiomatizing concept of number (which was 

simplified as intuitive and undefined by the Greeks) was Guiseppe Peano. In his 

“The Principles of Arithmetic, Presented by a New Method,” Peano (94) stated 

the axioms of arithmetic. His five most celebrated axioms include: 

1. Principle one (P1): Zero is a number. 

2. Principle two (P2): The successor of any number is a number. 

3. Principle three (P3): Zero is not the successor of any number. 

4. Principle four (P4): Any two numbers with the same successor are the 

same number. 

5. Principle five (P5): Any property of zero that is also a property of the 

successor of any number having it is a property of all numbers. 

Though Peano rendered these axioms in symbols, some logicians criticized 

his work as not adequately rigorous. Francesco (32), for instance, observes that 

“Peano’s proofs were rather informal, and the task of establishing the 

correctness of the deductive passages was often simple left of the reader”. Apart 

from this defect, Francesco (29) also observes that Frege and Russell in their 

logicist enterprise demanded that numbers should not simply be conceived as 

primitive and intuitive, as Peano did  in his notion of natural numbers, but 

should be definable in terms of sets, and the properties of relations between sets. 

This disposition is captured in Russell’s definition of Mathematics as the class of 

propositions which assert formal implications and contain logical constants 

(Principle106).   

 Without prejudice to the numerous great philosophers and 

mathematicians and their monumental achievements, the most outstanding 

great minds of immediate relevance to this research whose works and ideas in 

the construction of a formal system constituted the immediate and proximate 

background and impetus to Godel’s incompleteness theorems are Thomas 

Hilbert and Bertrand Russell. In his In the Light of Logic (3) Solomon Feferman, 

together with Francesco Berto, in his There is Something about Godel (39-40), 

expose a scintillating profile of Hilbert as a Superstar in Mathematics who is 

ranked alongside Henri Poincare, as one of the most seminal minds and most 

influential Mathematics character of the twentieth century era. In 1900, Hilbert 

gave one of the most profound lectures at the Second International Congress of 

Mathematics held in Paris. His lecture which was titled “Mathematical 

Problems”, contained a list of twenty three (23) problems. The list became so 

famous as a determinant of the scope of the major preoccupations and tasks of 

mathematicians in the 20th century such that outstanding mathematicians who 

aim at the Field Medal (equivalent to the Oscar) must address one of the 

unsolved problems in the list. Hilbert was so convinced of the possibility of 

deriving a solution to all mathematical problems to the extent that he premised 

his list of the problems in Mathematics with the popular axiom of solvability, 

thus: 
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Is this axiom of the solvability of every problem a peculiarity 

characteristic of mathematical thought alone, or is it possibly a 

general law inherent in the nature of the mind, that all questions 

which it asks must be answerable? …. This conviction of the 

solvability of every mathematical problem is a powerful incentive 

to the worker. We hear within us the perpetual call: there is the 

problem. Seek its solution. You can find it by pure reason, for in 

mathematics there is no ignorabimus (Feferman 21). 

Feferman (4) has cynically observed against the famous axiom of solvability 

of every problem in Mathematics  that it was daring to assume that the power of 

human thought is limitless. Aside this, one of the problems posed by Hilbert, 

which is of immediate concern to this work, is the second problem which 

demanded a proof that the axioms of arithmetic are compatible or consistent. 

Hilbert (21-22) articulated this problem thus:  

But above all I wish to designate the following as the most 

important among the numerous questions which can be asked 

with regard to axioms. To prove that they are not contradictory, 

that is, that a definite number of logical steps based upon them 

never lead to contradictory results. 

 

THE CONUNDRUM OF SET THEORETIC PARADOX, THE ADVANCES OF 

HILBERT, WHITEHEAD AND RUSSELL AND THE REBUTTAL FROM 

KURT GODEL’S INCOMPLETENESS THEOREMS 

 The problem of consistency in arithmetic arose when the early masters of 

Logic and Mathematics attempted an exportation of the axiomatic paradigm of 

geometry to number theory (which is also called set theory) so as to make 

arithmetic to be devoid of ambiguities of natural language and enhance an 

abstract conception of number which Euclid’s postulates lacked. It is in this 

respect that Jose Ferreiros (292) observes that Cantor defines “set” as any 

collection into a whole, M, of definite, distinguishable objects m (which will be 

called ‘elements’ of M) of our intuition or thought. Thus, the term ‘set’ is 

synonymous with ‘aggregate’ ‘collection’ or ‘class.’ However, one common 

peculiarity with every set, class, or collection is that it contains a number of 

elements. In this wise that Russell (Principle116) defines number in terms of set 

or class as “mathematically, a number is nothing but a class of similar classes”. 

This is further corroborated by Berto, thus, “One of the features that renders set 

theory important for mathematics is the fact that sets can be members or 

elements of sets in their turn. In this sense, sets are not just collections of objects, 

but objects themselves… Frege and Russell based their logicist approach on the 

possibility of reducing numbers to sets by considering them as sets of sets” (19). 

This idea that sets can be members of themselves ignited crisis of 

paradoxes in set theory- which was the foundation of Mathematics. Two of 

some of the most profound scholars in mathematical logic who advocated that 
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Mathematics should be based on axiomatised set theory were Frege and Russell. 

Though the latter is of immediate relevance to this work, it is worth mentioning 

that the duo independently formalized the elaborate programmes for the 

reduction of Mathematics to Logic. The former accomplished that project in his 

Begriffsschrift (Concept-Script) while the later achieved it in his Magnus opus The 

Principia Mathematica. The discovery of the set theoretical paradox that 

constituted a conundrum, which rocked the attempt at founding mathematics 

on a formalized axiomatic set theory, is credited to Russell. This discovery was 

made in the course of Russell’s study of Cantor’s and Frege’s works and he 

communicated his discovery of a contradiction in set theory to Frege, thus: 

You state that a function, too, can act as the indeterminate 

element. This I formerly believed, but now this view seems 

doubtful to me because of the following contradiction. Let w be 

the predicate: to be a predicate that cannot be predicated of itself, 

can w be predicted of itself. From each answer its opposite follows 

(Letter to Frege 124-125). 

The discovery of this contradiction in the foundation of mathematics constituted 

a catastrophe to Frege’s Grundgesetze der Arithmetic (The Ground Work of 

Arithmetic) and Frege responded thus: “your discovery of the contradiction 

caused me the greatest surprise and, I would almost say, consternation, since it 

has shaken the basis on which I intended to build arithmetic” (Letter to Russell 

127). 

 A statement of Russell’s paradox (Principle 107) asserts that the class of all 

classes which are not members of themselves can be proved to be and not to be 

members of itself. Interpreting class as set, Abraham Fraenkel et al (5), in proof 

of this Russell’s antinomy, explains that though certain sets can be clearly 

shown not to be members of themselves, like the set of planets which obviously 

is not a planet (not a member of itself) but there is a set of which cannot be 

definitely determined whether it is a member of itself or not. An instance of this 

is: the set of all sets that are not members of themselves. Denoting this set as ‘S,’ 

he observes that if one takes ‘S’ as a member of itself, then it belongs to the set of 

all sets that are not members of themselves, therefore, it is not a member of 

itself.  If one takes ‘S’ as not a member of ‘S’ then it does not belong to the set of 

all sets that are not members of themselves, therefore, it is a member  of itself. 

Thus ‘S’ is a member of ‘S’ if and only if ‘S’ is not a member of ‘S.’ This is 

evidently a contradiction. Detailing how Russell came to the conception of this 

contradiction in set theory, it is explained in John Slater’s introductory note to 

The Principles (xxviii) that Russell came to conceive the idea of the contradiction 

in set theory when he noticed that some classes are members of themselves, like 

the class of abstract ideas, which is also an abstract idea, whereas others are not, 

like the class of bicycles, is not a bicycle. These classes which are not members of 

themselves, Russell regarded them as “ordinary” classes. Using ‘O’ to designate 

all the classes which are not members of themselves (the ordinary classes), 

Russell then asked whether ‘O’ was a member of itself or not. Suppose that ‘O’ is 
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a member of ‘O,’ then since all members of ‘O’ are non-self-membered, it follows 

that ‘O’ is not a member of ‘O.’ This paradox is a vivid violation of some logical 

principles like the law of Non-contradiction, the Principle of excluded middle, 

etc.  

 Evaluating the nature of paradoxes, Russell observes that all logical 

contradictions have the character of circularity otherwise called self-

referentiality, which he gave the name, “reflexiveness”. Explaining this, he says 

in his Principia Mathematica that “In all the above contradiction… there is a 

common characteristic, which we may describe as self- reference or 

reflexiveness. The remark of Epimenides must include itself in its own scope. If 

all classes, provided there are not members of themselves, are members of [R], 

this must also apply to [R]” (61-62).This vicious circularity or self- reflexiveness 

is also a characteristic of the Liar’s and the Barber’s paradoxes. The devastating 

impact that the set theoretic paradox had on the foundation of Mathematics is 

expressed by Hilbert, thus: 

Let us admit that the situation in which we presently find 

ourselves with respect to the paradoxes is in the long run 

intolerable. Just think: in mathematics, this paragon of reliability 

and truth, the very notions and inferences, as everyone learns, 

teaches and uses them, lead to absurdities. And where else would 

reliability and truth be found if even mathematical thinking fails 

(On the Infinite374) 

Convinced that there are no unsolvable problems in Mathematics or no 

ignorabimus (the non-ignorabimus of Hilbert is in reference to an old saying, 

“ignoramus et ignorabimus,” which means, “we do not know and we shall never 

know”) he sets out to rid Mathematics of inconsistencies or contradictions and, 

thus, solve the problem of the crisis at the foundation of Mathematics through a 

progrmmme called Formalism. This formal system possesses characteristics of 

the classical axiomatic method in that it is made up of clearly defined terms and 

axioms. However, among the deficiencies of Euclid’s axiomatic method, 

according to Franzen (17), are that the language of the system is not formally 

specified that is, it is vague and natural, and his proofs use geometrical 

assumptions not contained in the postulates. Thus, the remarkable difference 

between the classical axiomatic system and the formal axiomatic system is that 

the theories of the formal system have been completely translated into a 

rigorous artificial language of symbolic logic devoid of any extraneous meaning 

apart from the one specified in the system. 

 Exposing his notion of a formal system and its components, Hilbert 

asserts that: 

… We now divests the logical signs of all meaning just as we did 

the mathematical ones, declare that the formulas of the logical 

calculus do not mean anything in themselves….In a way that 

actually corresponds to the transition from contextual number 
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theory to formal algebra. We regard the signs and operation 

symbols of the logical calculus as detached from their contextual 

meaning. In this way we now finally obtain, in place of the 

contextual mathematical science that is communicated by means of 

ordinary language, an inventory of formulas that are formed from 

mathematical and logical signs and follow each other according to 

definite rules. Certain of these formulas correspond to the 

mathematical axioms and to contextual inference there 

corresponds the rules according to which the formulas follow each 

other, hence contextual inference is replaced by manipulation of 

signs according to rules, and in this way the full transition from 

naive to a formal treatment is now accomplished (On the Infinite 

381) 

Hilbert therefore conceived a formalized axiomatic system as a system 

individuated by signs made up of primitive symbols of logic, formulas, and 

rules of inference, formal proofs, and theorems. Formalizing an axiomatized 

system, therefore, requires choosing an artificial language for the theory. Such 

an artificial language, for Hilbert, is made up of variables like A,B,C, to Z, 

logical symbols like → for “if then”, ↔ for “if and only if”, ~ for “not”,   for 

“and “,   for “or,” the equality signs “ =,” and the two quantifiers; the “for all” 

quantifier  and “there exist” quantifier  and finally the undefined primitive 

terms of arithmetic and their appropriate symbols namely “zero” “addition” 

and “multiplication” symbolized as 0,+, x. 

 Gregory Chaitin (77-79) observes that Hilbert's formal system possesses 

three cardinal properties: 

1. It must be complete. 

2. It must be consistent.  

3. It must be decidable.  

By the first condition, every statement in the system is to be proved. The 

second requires that if a system is proved true, it cannot at the same time be 

proved false.  The third implies that there exists a method or an algorithm that is 

guaranteed to prove the statement either true or false. A system that possesses 

within itself demonstrable rules of proof is said to be complete and decidable 

while the one that lacks it is said to be incomplete and undecidable. A system 

that does not allow for contradictions is said to be consistent while the one that 

allows is said to be inconsistent. It was Hilbert’s cherished aspiration that once 

such a formal theory that possesses those characteristics is constructed then 

contradictions will be banished from the enterprise of mathematics and all the 

problems of mathematics would be decided. 

In response to Hilbert's call for the solution to the consistency problem 

and the formal axiomatization of mathematics, Bertrand Russell and Alfred 

North Whitehead came out with a three volume Magnus Opus – The Principia 

Mathematica– which reduced to a few axioms and rules of inference all the 

methods of proof used in Mathematics. The rationale for this grand formal 
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system was that if the axioms of number theory are expressed as derivable as 

theorems of formal logic, then the question of the consistency of Mathematics is 

solved when the consistency of the axioms of logic is demonstrated. This 

rationale is an emanation from the Frege-Russell thesis which holds the view 

that Mathematics is reducible to logic. Russell introduced the theory of logical 

types in the Principia to tame and outflank the antinomial Paradoxes. In this 

respect, Russell developed: 

A rapid hierarchy of types of objects: individuals, sets, sets of sets, 

sets of sets of sets……. What belongs to a certain logical type can 

be (or not be) a member only of what belongs to the immediately 

superior logical type. The membership relation can hold, or fail to 

hold only between an individual and a set of individuals or 

between a set of individuals and a set of individuals; and so on. 

The construction allows any sets to contain only things of one 

order; it allows only set composed so to speak, of objects that are 

homogenous with respect to the hierarchy. Therefore, there is no 

set of all sets or of all ordinals etc. (Berto37).  

Russell's Principia came as a most welcome response to the search for a 

consistent and complete formal system of Mathematics. It was at this critical 

stage where the crisis of inconsistency instigated by the paradoxes seems to 

have been settled, that Gödel came out with a rebuttal of Hilbert’s non-

ignorabimus and the consistency and completeness of the Principia 

Mathematica. Gödel then set forth two fundamental theorems that would 

serve to foil Hilbert’s optimism about a formal consistent and complete 

system of Mathematics. The work offers an overview of emergence of 

formalism, thus: 

The development of mathematics towards greater precision has 

led, as is well known, to the formalization of large tracts of it, so 

that one can prove any theorem using nothing but a few 

mathematical rules. The most comprehensive formal systems that 

have been are the system of Principia Mathematica (PM) on the one 

hand and the Zermelo-Fraenkel axiom of set theory... on the other. 

These two systems are so comprehensive that in them all methods 

of proofs used in mathematics today are formalized, that is, 

reduced to a few axioms and rules of inference. One might 

therefore conjecture that these axioms and rules of inference are 

sufficient to decide any mathematical axiom that can at all be 

formally be expressed in these systems. It will be shown below 

that this is not the case that on the contrary there are in the two 

systems mentioned relatively simple problems in the theory of 

integer that cannot be decided on the basis of the axioms. This 

situation... holds for a wide class of formal systems (Godel, On 

Formally Undecidable Propositions 145). 
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In his statement of the first incompleteness theorem, Gödel asserts that: “Every 

formal system with finitely many axioms that contains the arithmetic of the 

natural number is incomplete” (On Undecidable Sentences, Volume 111; 

Unpublished Essays 32).His statement of the second incompleteness theorem 

reads: “The consistency of a formal system can never be established by methods 

of proof…formalized in the system in question; rather, for that one always needs 

some methods of proof that transcend the system”(On Undecidable Sentences 

35). 

Without prejudice to the technical sophistications of Gödel’s proof, it is 

evident that he offered Liar’s paradox as a heuristic analogy for comprehending 

the import of his theorem. This is specifically contained in “On formally 

Undecidable Propositions of Principia Mathematica and Related Systems 1” 

(145-149). Yet, the paradox is credited to Epimenides; a Greek philosopher and 

prophet, and its form is reflected in the self-reflexive statement which says “This 

very statement is false”. The Biblical counterpart of the paradox is exemplified 

in Pauline passage, which says: “one of themselves, even a prophet of their own 

said, “Cretians are always liars… this witness is true (Titus1:12-13). These 

statements share the features of circular self reflexivity and self contradiction. It 

is self reflexive because it is making assertion about itself and contradictory 

because if one considers the statement as true, it contradicts what the statement 

asserts, namely, that it is false. On the other hand, if one appraises it as false, 

then it corresponds with the true assertion of the statement, namely, that it is 

false. Either way, the statement is inconsistent and contradictory because it is 

both true and false simultaneously.  

One most profound and disturbing implication of paradoxical statements 

like the one above is that if they could be introduced into a formal system, they 

would render such a system vulnerable to incompleteness, inconsistency and 

undecidability. This was exactly what Godel did to the formal system of 

Principia Mathematica to proof that it is incomplete and inconsistent. Since a 

formal system of Mathematic is a system of axioms and Mathematics deal with 

provability or unprovability of theorems, Godel had to device a way of 

constructing an axiomatic mathematical proposition about the system of 

Principia Mathematica which makes a self- reflexive mathematical assertion to 

resemble the Liar’s paradox. The self-referential proposition that Godel made 

was: G is unprovable in this system. If it is true that this statement is unprovable in 

the formal system of Principia Mathematica, then it implies that there exist true 

statements in the system that cannot be proved and by this demonstration, the 

system of Principia Mathematica fails to meet the first cardinal criterion of a 

formal system – that of completeness – which requires that all the propositions 

in the system must be proved. With this, Godel proved his first incompleteness 

theorem that a formal system contains true but unprovable propositions. Next, if 

the proposition that, G is unprovable in this system, is false, that means that (it is 

true that) G is provable. This results in a situation where the proposition is both 

false and true simultaneously. Consequently, a contradiction or inconsistency is 
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generated in the formal system. Through this result, the system fails the second 

criterion of consistency which Hilbert wanted to achieve. With this 

demonstration, Gödel proved his second incompleteness theorem that a formal 

system that can be proved as complete cannot at the same time demonstrate its 

consistency. Finally, since the consistency of the system cannot be demonstrated 

within the system, then the system fails the criterion of decidability. 

 

CONCLUSION 

This research was propelled by the prime aim of rendering the 

incompleteness theorem of Kurt Godel in a manner that is meaningfully 

intelligible to both experts and non-experts. It presented those theorems without 

the complex equation codifications that usually characterize such mathematical 

ideas. Through a narrative of the remote and proximate precursors who 

contributed immensely to the idea of axiomatic formalization of mathematics, 

like Euclid, Dedekind, Hilbert, Whitehead and Russell, the work engaged how 

Gödel employed the incompleteness theorems to refute the formalization 

program of Hilbert, Whitehead and Russell. 
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