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ABSTRACT

Mathematics is generally perceived as an exact science. Yet the disparate
thoughts establishing the exactness are replete with lots of technicalities that are,
ordinarily, not simple. Consequently, the major cognitive barrier that
philosophers of Mathematics encounter in the course of wunraveling
mathematically related ideas has been the challenge of converting the
sophisticated crypto-codes associated with mathematical equations into a non-
technical form for easy comprehension by both experts and non-experts. The
specific objective of this article with the title, “Kurt Godel’s Rebuttal of
Formalism in Mathematics,” is to present the incompleteness theorems of Kurt
Godel in a non-technical manner so as to simplify its intelligibility for both
philosophers and mathematicians. To achieve this, the research undertakes a
narrative exposition of some of the attempts to formalize the axioms of
mathematics. In the exposition, the contributions of Euclid, Dedekind, Hilbert,
Whitehead and Russell in the attempt to build Mathematics into a rigorous
formal system that is complete, consistent, and decidable are analyzed.
Subsequently, the essay advances to the discussion of Kurt Godel’s rebuttal of
formalism through the instrumentality of his incompleteness theorems. Primely,
this research exercise reckons the non-mathematical disambiguation of Godel’s
incompleteness theorems undertaken in this piece as the hallmark of the article.
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INTRODUCTION

Godel’s theorem is perceived by many as “the third leg, together with
Heisenberg’s uncertainty principle and Einstein’s relativity, of that tripod of
theoretical cataclysms that have been felt to force disturbances deep down in
the foundation of the exact sciences” (Goldstein 21-22). What is popularly
referred to as Godel’s theorem is a conjunction of two theorems, propounded by
Godel in his work entitled “On Formally Undecidable Propositions of Principia
Mathematica and Related Systems 1.” Godel’s work was a pessimistic response
to David Hilbert’s 1900 lecture, where he, as a leading mathematician in the
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modern era, set the pace for mathematicians in the Twentieth Century by
outlining a set of twenty three problems that mathematicians must solve in the
Century. He was so optimistic of the solvability of every mathematical problem
that he translated this optimism into the axioms of solvability in his famous no
ignorabimus statement, which states that there are no unsolvable problems in
Mathematics.

Among the problems posed by Hilbert was the second problem which
demanded for a proof of the consistency of the axioms of mathematics. The first
path to the solution of this problem required configuring the entire mathematics
into one axiomatic formal system from which one could derive all the theorems
of mathematics according to fixed syntactical rules of inference and the second
path required demonstrating that the formal system is consistent. Such a formal
system that follows the first path and contains all the rules for deciding or
proving all mathematical theorems is said to be complete. A formal system is said
to be consistent if it is incapable of generating contradictory propositions and
inconsistent if otherwise.

Alfred North Whitehead and Bertrand Russell rose to the task of
constructing a formal system of mathematics that bears the features of
completeness and consistency in their novel Principia Mathematical. But Godel
critiqued this effort of Whitehead and Russell and by extension, Hilbert’s
programme, in his ground breaking theorems mentioned above and proved that
the formal system of Principia Mathematica and other related formal systems
cannot fulfill the criteria of completeness and consistency. This work is a
discursive presentation of the Godellian paraphernalia.

THE EUCLIDEAN BACKGROUND TO GODEL’'S INCOMPLETENESS
THEOREMS IN RELATION TO THE AXIOMATIC FORMALIZATION OF
MATHEMATICS

A proper understanding of the Godellian theorem requires a brief
historical survey of the axiomatic formalization of mathematics programme
which gave rise to Godel’s famous theorems. The notion of an axiomatic system
is remotely traceable to Euclid. In his Elements of Geometry, which was regarded
as a sacred book of geometry for over two thousand years, Euclid rigorously
established the science of geometry on a system of definitions, postulates and
axioms. The entire science and theorems of geometry were deduced from the
principles embedded in Euclid’s work which were enunciated in the definitions,
postulates and axioms. Douglas Hofstadter (88) observes that Euclid set up the
paradigm of rigour in Mathematics because he so constructed his geometry in
such a way that any given theorem or proposition of geometry depended only
on or was to be derived from the hitherto established principles and axioms.
This implies that every valid principle and proposition of the system must be at
realm, consistent or non-contradictory to the axioms. Kneebone, in his
Mathematical Logic and the Foundations of Mathematics: An Introductory Survey
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(135-136), spells out some principles of Euclid’s axiomatic system classified
under the three headings of definitions, postulates and common notions or
axioms. No discussion of Euclid’s principles will be complete without the
mention of the controversial fifth postulate (the parallel postulate) and how it
paved the way for the emergence of non-Euclidean geometry. Ernest Nagel and
James Newman (9) observe in respect of the fifth postulate that for some
reasons, the postulate did not appear self-consistent to the ancient Greeks. The
major reason for its lack of consistency, according to the duo, is that Euclid
defines parallel lines as straight lines in a plane, which if produced indefinitely
in both directions do not meet. Thus, to say that two lines are parallel is to assert
the impossibility of the two lines meeting even infinitely. The fifth postulate
appears to be an apparent contradiction of Euclid’s definition of the parallel
lines. Another controversial assertion of the fifth postulate is the assumption
that “through every point P not on a given line L there exists exactly one parallel
to L, i.e. one straight line which does not meet L” (Hempel 464). Thus, it is
evident that a proof of Euclid’s parallel postulate on the basis of the other
postulates is impossible.

This independence of the fifth postulate from the other four does not,
however, mean that it is false. Alfred Tarski (461) observes that “Euclid’s
parallel postulate is not false, but it is true only on a plane (two dimensional)
surface like a chalkboard.” In the 19* century, the Russian, Lobacheusky, and
the Hungarian, Bolyai, simultaneously but independently discovered the non-
Euclidean geometry called hyperbolic geometry. Later Bernhard Riemann
developed an alternative geometry called elliptical geometry.

Fundamentally, Euclid’s axiomatisation programme lacked the rigour of
the formal language necessary for the eradication and elimination of ambiguity
in Mathematic. This is borne out of the fact that Euclid’s principles were mostly
rendered in ordinary natural language which is most times burdened by
imprecision, vagueness and equivocation. In forestalling this defect of ordinary
language, Francesco Berto asserts that “philosophers have been envisaging
artificial, formal languages to serve as antidotes to the deficiencies of natural
language, and in which rigorous science could be formulated: languages whose
syntax was to be absolutely precise, and whose expressions were to have
completely precise and univocal meanings” (16).

Another deficiency of the ancient axiomatic system was that it lacked an
abstract conception of number. Kneebone (137) observes that this made
mathematicians to conceive magnitude mostly in terms of the geometrical areas,
lengths or volumes. These stated deficiencies of the ancient deductive system
were remedied efficiently in the modern era without necessarily discarding the
entire idea of the axiomatic system. The overriding influence that the axiomatic
system exerts on thinkers in all era of philosophy is captured by Nagel et al,
thus:

The axiomatic development of geometry made a powerful
impression upon thinkers throughout the ages; for the relatively
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small numbers of axioms carry the whole weight of the
inexhaustible numerous propositions derivable form them.
Moreover, if in some way the truth of the axioms can be
established... both the truth and the mutual consistency of all the
theorems are automatically guaranteed. For these reasons the
axiomatic form of geometry appeared to many generations of
outstanding thinkers as the model of scientific knowledge at its
best. It was natural to ask, therefore, whether other branches of
thought besides geometry can be placed upon a secure axiomatic
foundation (3).

THE MODERN BACKGROUND TO GODEL'S INCOMPLETENESS
THEOREMS IN RELATION TO THE AXIOMATIC FORMALIZATION OF
MATHEMATICS
The admiration of the axiomatic system came with the adoption and
exportation of this system to all the branches of Mathematics. However, in the
modern era, the rigour of a formal language was added to the axiomatic system
to make it devoid of the ambiguities of natural language. Thus, in the modern
era of Mathematics, many attempts were made to eliminate contradictions and
inconsistencies by reducing all expressions to rigorous symbols, signs and
formulae. A deductive system that is so rigorous is called a formal system. One
of the early masters who attempted an exportation of the axiomatic paradigm to
Arithmetics or Number theory was Richard Dedekind. He was so appalled by
the lack of a rigorous basis for arithmetic that he had to constantly make
recourse to axiomatic geometrical intuitions as an indispensable didactic tool for
his lectures on differential calculus (Dedekind, Continuity and Irrational
Numbers 767). He therefore attempted to elaborate an abstract basis for the
rigorous foundation of Mathematics. This abstract foundation, for Dedekind is
logic and not intuition, as can be seen below, in his conception of number.
In calling arithmetic (algebra, analysis) only as a part of logic, I am
already asserting that I hold the concept of number to be wholly
independent of representations or intuitions of space and time and
that I hold it rather to be a product of the pure laws of thought... if
we scrutinize closely what is done in counting a set or number
things, we are led to consider the ability of the mind to relate
things to things, to let a thing correspond to a thing, or to
represented a thing by a thing, an ability without which no
thinking is possible ((“Was Sind und was Sollen die Zahlen” or
“On what Numbers ought to be” 790-791).
This shows that Dedekind holds the concept of number to be an immediate
outcome of laws of thought devoid of intuition. He clearly articulates the
importance of founding Mathematics on the principles of relation between
things which, in this case, implied logic.
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One other seminal mind who attempted establishing Mathematics on a
rigorous basis by symbolically axiomatizing concept of number (which was
simplified as intuitive and undefined by the Greeks) was Guiseppe Peano. In his
“The Principles of Arithmetic, Presented by a New Method,” Peano (94) stated
the axioms of arithmetic. His five most celebrated axioms include:

1. Principle one (P1): Zero is a number.

2. Principle two (P2): The successor of any number is a number.

3. Principle three (P3): Zero is not the successor of any number.

4. Principle four (P4): Any two numbers with the same successor are the

same number.

5. Principle five (P5): Any property of zero that is also a property of the

successor of any number having it is a property of all numbers.

Though Peano rendered these axioms in symbols, some logicians criticized
his work as not adequately rigorous. Francesco (32), for instance, observes that
“Peano’s proofs were rather informal, and the task of establishing the
correctness of the deductive passages was often simple left of the reader”. Apart
from this defect, Francesco (29) also observes that Frege and Russell in their
logicist enterprise demanded that numbers should not simply be conceived as
primitive and intuitive, as Peano did in his notion of natural numbers, but
should be definable in terms of sets, and the properties of relations between sets.
This disposition is captured in Russell’s definition of Mathematics as the class of
propositions which assert formal implications and contain logical constants
(Principle106).

Without prejudice to the numerous great philosophers and
mathematicians and their monumental achievements, the most outstanding
great minds of immediate relevance to this research whose works and ideas in
the construction of a formal system constituted the immediate and proximate
background and impetus to Godel’s incompleteness theorems are Thomas
Hilbert and Bertrand Russell. In his In the Light of Logic (3) Solomon Feferman,
together with Francesco Berto, in his There is Something about Godel (39-40),
expose a scintillating profile of Hilbert as a Superstar in Mathematics who is
ranked alongside Henri Poincare, as one of the most seminal minds and most
influential Mathematics character of the twentieth century era. In 1900, Hilbert
gave one of the most profound lectures at the Second International Congress of
Mathematics held in Paris. His lecture which was titled “Mathematical
Problems”, contained a list of twenty three (23) problems. The list became so
famous as a determinant of the scope of the major preoccupations and tasks of
mathematicians in the 20" century such that outstanding mathematicians who
aim at the Field Medal (equivalent to the Oscar) must address one of the
unsolved problems in the list. Hilbert was so convinced of the possibility of
deriving a solution to all mathematical problems to the extent that he premised
his list of the problems in Mathematics with the popular axiom of solvability,
thus:
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Is this axiom of the solvability of every problem a peculiarity
characteristic of mathematical thought alone, or is it possibly a
general law inherent in the nature of the mind, that all questions
which it asks must be answerable? .... This conviction of the
solvability of every mathematical problem is a powerful incentive
to the worker. We hear within us the perpetual call: there is the
problem. Seek its solution. You can find it by pure reason, for in
mathematics there is no ignorabimus (Feferman 21).

Feferman (4) has cynically observed against the famous axiom of solvability
of every problem in Mathematics that it was daring to assume that the power of
human thought is limitless. Aside this, one of the problems posed by Hilbert,
which is of immediate concern to this work, is the second problem which
demanded a proof that the axioms of arithmetic are compatible or consistent.
Hilbert (21-22) articulated this problem thus:

But above all I wish to designate the following as the most
important among the numerous questions which can be asked
with regard to axioms. To prove that they are not contradictory,
that is, that a definite number of logical steps based upon them
never lead to contradictory results.

THE CONUNDRUM OF SET THEORETIC PARADOX, THE ADVANCES OF
HILBERT, WHITEHEAD AND RUSSELL AND THE REBUTTAL FROM
KURT GODEL’S INCOMPLETENESS THEOREMS

The problem of consistency in arithmetic arose when the early masters of
Logic and Mathematics attempted an exportation of the axiomatic paradigm of
geometry to number theory (which is also called set theory) so as to make
arithmetic to be devoid of ambiguities of natural language and enhance an
abstract conception of number which Euclid’s postulates lacked. It is in this
respect that Jose Ferreiros (292) observes that Cantor defines “set” as any
collection into a whole, M, of definite, distinguishable objects m (which will be
called ‘elements’ of M) of our intuition or thought. Thus, the term ‘set’ is
synonymous with ‘aggregate’ ‘collection” or ‘class.” However, one common
peculiarity with every set, class, or collection is that it contains a number of
elements. In this wise that Russell (Principle116) defines number in terms of set
or class as “mathematically, a number is nothing but a class of similar classes”.
This is further corroborated by Berto, thus, “One of the features that renders set
theory important for mathematics is the fact that sets can be members or
elements of sets in their turn. In this sense, sets are not just collections of objects,
but objects themselves... Frege and Russell based their logicist approach on the
possibility of reducing numbers to sets by considering them as sets of sets” (19).

This idea that sets can be members of themselves ignited crisis of
paradoxes in set theory- which was the foundation of Mathematics. Two of
some of the most profound scholars in mathematical logic who advocated that

‘"
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Mathematics should be based on axiomatised set theory were Frege and Russell.
Though the latter is of immediate relevance to this work, it is worth mentioning
that the duo independently formalized the elaborate programmes for the
reduction of Mathematics to Logic. The former accomplished that project in his
Begriffsschrift (Concept-Script) while the later achieved it in his Magnus opus The
Principia Mathematica. The discovery of the set theoretical paradox that
constituted a conundrum, which rocked the attempt at founding mathematics
on a formalized axiomatic set theory, is credited to Russell. This discovery was
made in the course of Russell’s study of Cantor’s and Frege’s works and he
communicated his discovery of a contradiction in set theory to Frege, thus:
You state that a function, too, can act as the indeterminate
element. This I formerly believed, but now this view seems
doubtful to me because of the following contradiction. Let w be
the predicate: to be a predicate that cannot be predicated of itself,
can w be predicted of itself. From each answer its opposite follows
(Letter to Frege 124-125).
The discovery of this contradiction in the foundation of mathematics constituted
a catastrophe to Frege’'s Grundgesetze der Arithmetic (The Ground Work of
Arithmetic) and Frege responded thus: “your discovery of the contradiction
caused me the greatest surprise and, I would almost say, consternation, since it
has shaken the basis on which I intended to build arithmetic” (Letter to Russell
127).

A statement of Russell’s paradox (Principle 107) asserts that the class of all
classes which are not members of themselves can be proved to be and not to be
members of itself. Interpreting class as set, Abraham Fraenkel et al (5), in proof
of this Russell’s antinomy, explains that though certain sets can be clearly
shown not to be members of themselves, like the set of planets which obviously
is not a planet (not a member of itself) but there is a set of which cannot be
definitely determined whether it is a member of itself or not. An instance of this
is: the set of all sets that are not members of themselves. Denoting this set as ‘S,
he observes that if one takes ‘S” as a member of itself, then it belongs to the set of
all sets that are not members of themselves, therefore, it is not a member of
itself. If one takes ‘S’ as not a member of ‘S” then it does not belong to the set of
all sets that are not members of themselves, therefore, it is a member of itself.
Thus ‘S” is a member of ‘S” if and only if ‘S’ is not a member of ‘S.” This is
evidently a contradiction. Detailing how Russell came to the conception of this
contradiction in set theory, it is explained in John Slater’s introductory note to
The Principles (xxviii) that Russell came to conceive the idea of the contradiction
in set theory when he noticed that some classes are members of themselves, like
the class of abstract ideas, which is also an abstract idea, whereas others are not,
like the class of bicycles, is not a bicycle. These classes which are not members of
themselves, Russell regarded them as “ordinary” classes. Using ‘O’ to designate
all the classes which are not members of themselves (the ordinary classes),
Russell then asked whether ‘O” was a member of itself or not. Suppose that ‘O’ is
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a member of ‘O,” then since all members of ‘O’ are non-self-membered, it follows
that ‘O’ is not a member of “O.” This paradox is a vivid violation of some logical
principles like the law of Non-contradiction, the Principle of excluded middle,
etc.

Evaluating the nature of paradoxes, Russell observes that all logical
contradictions have the character of circularity otherwise called self-
referentiality, which he gave the name, “reflexiveness”. Explaining this, he says
in his Principia Mathematica that “In all the above contradiction... there is a
common characteristicc which we may describe as self- reference or
reflexiveness. The remark of Epimenides must include itself in its own scope. If
all classes, provided there are not members of themselves, are members of [R],
this must also apply to [R]” (61-62).This vicious circularity or self- reflexiveness
is also a characteristic of the Liar’s and the Barber’s paradoxes. The devastating
impact that the set theoretic paradox had on the foundation of Mathematics is
expressed by Hilbert, thus:

Let us admit that the situation in which we presently find
ourselves with respect to the paradoxes is in the long run
intolerable. Just think: in mathematics, this paragon of reliability
and truth, the very notions and inferences, as everyone learns,
teaches and uses them, lead to absurdities. And where else would
reliability and truth be found if even mathematical thinking fails
(On the Infinite374)

Convinced that there are no unsolvable problems in Mathematics or no
ignorabimus (the non-ignorabimus of Hilbert is in reference to an old saying,
“ignoramus et ignorabimus,” which means, “we do not know and we shall never
know”) he sets out to rid Mathematics of inconsistencies or contradictions and,
thus, solve the problem of the crisis at the foundation of Mathematics through a
progrmmme called Formalism. This formal system possesses characteristics of
the classical axiomatic method in that it is made up of clearly defined terms and
axioms. However, among the deficiencies of Euclid’s axiomatic method,
according to Franzen (17), are that the language of the system is not formally
specified that is, it is vague and natural, and his proofs use geometrical
assumptions not contained in the postulates. Thus, the remarkable difference
between the classical axiomatic system and the formal axiomatic system is that
the theories of the formal system have been completely translated into a
rigorous artificial language of symbolic logic devoid of any extraneous meaning
apart from the one specified in the system.

Exposing his notion of a formal system and its components, Hilbert
asserts that:

... We now divests the logical signs of all meaning just as we did
the mathematical ones, declare that the formulas of the logical
calculus do not mean anything in themselves....In a way that
actually corresponds to the transition from contextual number
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theory to formal algebra. We regard the signs and operation
symbols of the logical calculus as detached from their contextual
meaning. In this way we now finally obtain, in place of the
contextual mathematical science that is communicated by means of
ordinary language, an inventory of formulas that are formed from
mathematical and logical signs and follow each other according to
definite rules. Certain of these formulas correspond to the
mathematical axioms and to contextual inference there
corresponds the rules according to which the formulas follow each
other, hence contextual inference is replaced by manipulation of
signs according to rules, and in this way the full transition from
naive to a formal treatment is now accomplished (On the Infinite
381)
Hilbert therefore conceived a formalized axiomatic system as a system
individuated by signs made up of primitive symbols of logic, formulas, and
rules of inference, formal proofs, and theorems. Formalizing an axiomatized
system, therefore, requires choosing an artificial language for the theory. Such
an artificial language, for Hilbert, is made up of variables like A,B,C, to Z,
logical symbols like — for “if then”, < for “if and only if”, ~ for “not”, A for
“and “, v for “or,” the equality signs “ =" and the two quantifiers; the “for all”
quantifier V and “there exist” quantifier3 and finally the undefined primitive
terms of arithmetic and their appropriate symbols namely “zero” “addition”
and “multiplication” symbolized as 0,+, x.

Gregory Chaitin (77-79) observes that Hilbert's formal system possesses
three cardinal properties:

1. It must be complete.
2. It must be consistent.
3. It must be decidable.

By the first condition, every statement in the system is to be proved. The
second requires that if a system is proved true, it cannot at the same time be
proved false. The third implies that there exists a method or an algorithm that is
guaranteed to prove the statement either true or false. A system that possesses
within itself demonstrable rules of proof is said to be complete and decidable
while the one that lacks it is said to be incomplete and undecidable. A system
that does not allow for contradictions is said to be consistent while the one that
allows is said to be inconsistent. It was Hilbert’s cherished aspiration that once
such a formal theory that possesses those characteristics is constructed then
contradictions will be banished from the enterprise of mathematics and all the
problems of mathematics would be decided.

In response to Hilbert's call for the solution to the consistency problem
and the formal axiomatization of mathematics, Bertrand Russell and Alfred
North Whitehead came out with a three volume Magnus Opus — The Principia
Mathematica— which reduced to a few axioms and rules of inference all the
methods of proof used in Mathematics. The rationale for this grand formal
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system was that if the axioms of number theory are expressed as derivable as

theorems of formal logic, then the question of the consistency of Mathematics is

solved when the consistency of the axioms of logic is demonstrated. This

rationale is an emanation from the Frege-Russell thesis which holds the view

that Mathematics is reducible to logic. Russell introduced the theory of logical

types in the Principia to tame and outflank the antinomial Paradoxes. In this

respect, Russell developed:

23

A rapid hierarchy of types of objects: individuals, sets, sets of sets,
sets of sets of sets....... What belongs to a certain logical type can
be (or not be) a member only of what belongs to the immediately
superior logical type. The membership relation can hold, or fail to
hold only between an individual and a set of individuals or
between a set of individuals and a set of individuals; and so on.
The construction allows any sets to contain only things of one
order; it allows only set composed so to speak, of objects that are
homogenous with respect to the hierarchy. Therefore, there is no
set of all sets or of all ordinals etc. (Berto37).

Russell's Principia came as a most welcome response to the search for a
consistent and complete formal system of Mathematics. It was at this critical
stage where the crisis of inconsistency instigated by the paradoxes seems to
have been settled, that Godel came out with a rebuttal of Hilbert’s non-
ignorabimus and the consistency and completeness of the Principia
Mathematica. Godel then set forth two fundamental theorems that would
serve to foil Hilbert’s optimism about a formal consistent and complete
system of Mathematics. The work offers an overview of emergence of
formalism, thus:

The development of mathematics towards greater precision has
led, as is well known, to the formalization of large tracts of it, so
that one can prove any theorem using nothing but a few
mathematical rules. The most comprehensive formal systems that
have been are the system of Principia Mathematica (PM) on the one
hand and the Zermelo-Fraenkel axiom of set theory... on the other.
These two systems are so comprehensive that in them all methods
of proofs used in mathematics today are formalized, that is,
reduced to a few axioms and rules of inference. One might
therefore conjecture that these axioms and rules of inference are
sufficient to decide any mathematical axiom that can at all be
formally be expressed in these systems. It will be shown below
that this is not the case that on the contrary there are in the two
systems mentioned relatively simple problems in the theory of
integer that cannot be decided on the basis of the axioms. This
situation... holds for a wide class of formal systems (Godel, On
Formally Undecidable Propositions 145).
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In his statement of the first incompleteness theorem, Godel asserts that: “Every
formal system with finitely many axioms that contains the arithmetic of the
natural number is incomplete” (On Undecidable Sentences, Volume 111;
Unpublished Essays 32).His statement of the second incompleteness theorem
reads: “The consistency of a formal system can never be established by methods
of proof...formalized in the system in question; rather, for that one always needs
some methods of proof that transcend the system”(On Undecidable Sentences
35).

Without prejudice to the technical sophistications of Godel’s proof, it is
evident that he offered Liar’s paradox as a heuristic analogy for comprehending
the import of his theorem. This is specifically contained in “On formally
Undecidable Propositions of Principia Mathematica and Related Systems 1”
(145-149). Yet, the paradox is credited to Epimenides; a Greek philosopher and
prophet, and its form is reflected in the self-reflexive statement which says “This
very statement is false”. The Biblical counterpart of the paradox is exemplified
in Pauline passage, which says: “one of themselves, even a prophet of their own
said, “Cretians are always liars... this witness is true (Titusl:12-13). These
statements share the features of circular self reflexivity and self contradiction. It
is self reflexive because it is making assertion about itself and contradictory
because if one considers the statement as true, it contradicts what the statement
asserts, namely, that it is false. On the other hand, if one appraises it as false,
then it corresponds with the true assertion of the statement, namely, that it is
false. Either way, the statement is inconsistent and contradictory because it is
both true and false simultaneously.

One most profound and disturbing implication of paradoxical statements
like the one above is that if they could be introduced into a formal system, they
would render such a system vulnerable to incompleteness, inconsistency and
undecidability. This was exactly what Godel did to the formal system of
Principia Mathematica to proof that it is incomplete and inconsistent. Since a
formal system of Mathematic is a system of axioms and Mathematics deal with
provability or unprovability of theorems, Godel had to device a way of
constructing an axiomatic mathematical proposition about the system of
Principia Mathematica which makes a self- reflexive mathematical assertion to
resemble the Liar's paradox. The self-referential proposition that Godel made
was: G is unprovable in this system. If it is true that this statement is unprovable in
the formal system of Principia Mathematica, then it implies that there exist true
statements in the system that cannot be proved and by this demonstration, the
system of Principia Mathematica fails to meet the first cardinal criterion of a
formal system — that of completeness — which requires that all the propositions
in the system must be proved. With this, Godel proved his first incompleteness
theorem that a formal system contains true but unprovable propositions. Next, if
the proposition that, G is unprovable in this system, is false, that means that (it is
true that) G is provable. This results in a situation where the proposition is both
false and true simultaneously. Consequently, a contradiction or inconsistency is
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generated in the formal system. Through this result, the system fails the second
criterion of consistency which Hilbert wanted to achieve. With this
demonstration, Godel proved his second incompleteness theorem that a formal
system that can be proved as complete cannot at the same time demonstrate its
consistency. Finally, since the consistency of the system cannot be demonstrated
within the system, then the system fails the criterion of decidability.

CONCLUSION

This research was propelled by the prime aim of rendering the
incompleteness theorem of Kurt Godel in a manner that is meaningfully
intelligible to both experts and non-experts. It presented those theorems without
the complex equation codifications that usually characterize such mathematical
ideas. Through a narrative of the remote and proximate precursors who
contributed immensely to the idea of axiomatic formalization of mathematics,
like Euclid, Dedekind, Hilbert, Whitehead and Russell, the work engaged how
Godel employed the incompleteness theorems to refute the formalization
program of Hilbert, Whitehead and Russell.
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